Physics 198, Spring Semester 1999 Introduction to Radiation Detectors and Electronics

Helmuth Spieler

Problem Set 10: Due on Tuesday, 13-Apr-99 at begin of lecture.

Discussion on Wednesday, 14-Apr-99 at 12 – 1 PM in 347 LeConte.

Office hours: Mondays, 3 – 4 PM in 420 LeConte

1. Traps in semiconductor materials are often characterized by a lifetime τ . A packet of charge subject to trapping will decay with time as

$$Q(t) = Q_0 e^{-t/\tau}$$

- a) In an electric field *E* the charge will drift. What is the charge remaining after drifting a distance *x*?
- b) The parameter $\mu E \tau$ is the trapping (or recombination) length L. In a detector with depletion width d, what is the induced signal charge as a function of d and L? Consider only the carrier type subject to trapping/recombination.
- c) If d >> L, what is the induced signal charge? How thick must the detector be for the induced charge to be 95% of the deposited charge?
- 2. A Si detector diode with 1 cm² area has a reverse bias current of 1 nA at a temperature of 20 °C.
 - a) Under forward bias, how much voltage is required to obtain a current of 1 mA?
 - b) On the same wafer there is a second identical diode, except that its diameter is $100 \mu m$. How large is its reverse bias current?
 - c) How much forward bias voltage on the small diode is required for a current of 1 mA? How much voltage is required after cooling the diode to -20 °C?
- 3. A radiation damaged detector has a reverse bias current of 1 μA at 100 μm depletion width. The operating temperature is 20 °C.
 - a) The detector is still partially depleted after quadrupling the bias voltage. How large is the reverse bias current?
 - b) What is the detector current when the temperature is decreased from 20 °C to -10 °C?

Turn page for Problem 4.

- 4. A spectroscopy system using a Si diode at room temperature (20 °C) exhibits an equivalent noise charge of 200 eV at the optimum shaping time of 1 μ s.
 - a) How large are the noise contributions (in eV) due to current and voltage noise?
 - b) Assuming that the current noise is dominated by the reverse bias current of the detector, what is the total noise when the detector is cooled to liquid nitrogen temperature?
 - c) If the detector is cooled to -20 °C, what is the optimum shaping time? Assume $F_i = F_v = 1$. What is the corresponding noise level?